

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0

CREATING A DIGITAL START LINE AND FINISH LINE WITH MICRO:BITS
Designing and producing vehicles such as rubber band
racers, electric vehicles, dragsters (Figure 1) or CO2-
bulb-powered rocket racers are all popular student
projects. The following activity suggests one way
Digital Technologies could be integrated into a unit
where vehicles are being designed and produced.

Adding a Digital Technologies perspective to
student racing vehicles
Let’s look at this authentic context for Digital
Technologies. Instead of getting students to use a
stopwatch and formula to work out their vehicle’s speed
and velocity at the finish line, ask them to produce a
digital timing system to measure time taken from the
start to the finish line. They could also apply other
formulas.

Figure 1: A dragster racer positioned at the
digital finish line

An example of this project is provided as a professional learning tutorial on the following
pages. The coding involved to create the digital start/finish line could be a unit in its own
right; however, in this project students will simply think about the instructions needed, learn
how to code those instructions and then refocus on the engineering part of the unit. We
recommend that teachers direct students to collect and interpret data on race times as part
of the activity. This will maximise the opportunity to learn about multiple aspects of Digital
Technologies learning in context.

Teachers could lead students through this unit or ask them to come up with the answers
more independently. The approach depends on confidence and the time available to teach
the unit.

Safety considerations
Always follow appropriate risk assessment procedures. Students will be using a laser in this activity.
Lasers can do damage to eyes if not treated carefully. While this laser draws only 30 mA, it would still
do damage so students need to be made aware of the safe/correct way to use the lasers.
An alternative method to using a laser transmitter and receiver is to use an infrared emitter and
receiver. For instructions on this method see Appendix A on page 10.

CLASSROOM IDEAS: YEARS 7–8

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 2

TUTORIAL
This tutorial shows how the coding needed for the digital start/finish line can be created
using both visual programming and general-purpose programming language.

Integration context: student-engineered vehicles (Design and Technologies)

The challenge: Create a digital start/finish line that captures the movement of a vehicle.

Materials list (Figure 2):
2 x micro:bits

2 x micro:bit power supply

1 x micro:bit USB connector

2 x laser transmitter (KY-008)*

https://tinyurl.com/swwg2qe

2 x laser receiver sensor (ICstation 5V) receiver*

https://tinyurl.com/wjjr7dy

4 x AA batteries

1 x AA battery pack/holder (4-battery capacity)

10 x alligator leads

Blu Tack

a computer to code the micro:bits

* See Appendix A for an infrared option.

Figure 2: L t R: micro:bit power supply, micro:bit,
micro:bit to USB connector , laser transmitter,
laser receiver sensor (ICstation 5V), 4-battery
capacity AA battery holder with alligator leads
attached.

Part A: Algorithms

Suggested introductory activity

Use the ACARA computational thinking poster as a stimulus to identify the aspects of
computational thinking involved in this activity. See
https://www.australiancurriculum.edu.au/media/7393/computational_thinking_poster.pdf

Algorithms: Expressed as a simple sequence of steps

What is the sequence of steps needed to achieve the digital solution?

• The start line micro:bit must sense a laser/infrared beam.
• When a change in the laser beam signal is detected (a vehicle passes through it), the

micro:bit must know that too.
• When change is detected, the micro:bit must start a timer.
• When change is again detected at the finish line (a vehicle passes through it) by a second

micro:bit and laser, the timer must stop.
• The user must be able to see the time taken/displayed. Optionally, we can get the

micro:bit to apply a formula to work out the average speed and finishing speed. These
extra data, average speed and finishing speed, also need to be displayed to the user.

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 3

Algorithms: Expressed in English/pseudocode

How could these steps be expressed in pseudocode?

Start line micro:bit
START
 SET communications channel to 10
 SET transmission power to full (7)
 SHOW a LED to indicate the program is running
 FOREVER
 SET a variable called level to analog input of pin 0
 IF value of level reduces to less than 30
 Send a message to listening devices
 Change LED to a tick
 Wait 20 seconds (long enough for the race to finish)
 LOOP
END

Finish line micro:bit
START
 SET communications channel to 10
 SET transmission power to full (7)
 SHOW a LED to indicate the program is running
 IF a message is received
 SET a variable called CountingTime to Zero
 SET a variable called Finished to False
 Change LED display to a square to show message has been received
 WHILE Finished = False
 PAUSE 100ms
 Change CountingTime by 0.1
 IF analog input of pin 0 is less than 30
 SET a variable called FinalTime to the current value of CountingTime
 SET Finished to true
 Endwhile
 IF button B pressed
 SHOW number FinalTime
END

The algorithm for the start line and finish line micro:bits is used to help align the laser and
the laser receiver. It should constantly display a number around (or above) 60 so it can
detect change when the beam is broken. Since each micro:bit is triggered by a change in
light detected, each needs to be accurately aligned. It takes practice to align the beam and
keep it still. Blu Tack can help with this. If a more accurate timer is required, adjust the code
so that the pause in the finish line micro:bit is reduced to 10 ms and the CountingTime is
changed by 0.01.

Algorithm for start line and finish line micro:bits
START
 IF button A is pressed
 Display analog input value of pin 0
END

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 4

Part B: Implementing the solution

Step 1: Setting up the timers

Set up the equipment and then follow the instructions to check that everything is in place.
First set up two laser detection systems – one at the start (start gate – Figure 3) and one at
the finish (finish gate – Figure 4).

Each detection system needs the laser to be aligned as accurately as possible.
When the racer breaks the beam it will: start (begin the timer – Figure 5) and then finish:
(end the timer – Figure 6). Note: The timing code is only on the finish line micro:bit.

Step 2: Wiring the laser transmitter

1. Connect the negative to the pin closest to –
 (Figure 7).

2. Connect the positive to the pin closest to S
 (Figure 7).

3. Connect the other end to the battery pack as
 shown in Figure 8.

Figure 5 Figure 6

Figure 7 shows the labels ‘–‘ and ‘S’ on the laser
transmitter. (The middle pin is not needed.)

Figure 3 Figure 4

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 5

Step 3: Wiring up the micro:bit to the laser receiver sensor

Figure 9 shows the sensor as it looks, taken out of the packaging. Facing you, at the top of
this image is the back of the sensor (the square shape on the three upright metal legs) – it

doesn’t sense anything on this side so we will need to carefully
bend it over so that the other side of the sensor is facing the finish
line (Figure 10). That way all the connecting wires will be out of the
way and off the road.

Next, connect the wires using what is
written on the sensor board to guide
you:
• GND to the GND on the micro:bit
• VCC to the 3V pin
• OUT to the micro:bit pin you choose

to use: 0 (as shown in Figure 11),
1 or 2.

When you connect the alligator clips/wires to the micro:bit, the set-up should look like
Figures 11 and 12.

Figure 8: Step 3 is to connect to the battery pack.

Figure 9
Figure 10

Figure 11: Laser receiver sensor Figure 12: micro:bit

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 6

Part C: Coding (implementing)

Coding using visual programming (MakeCode)

Now we know how to connect the micro:bit to the laser receiver sensor we can write the
code using www.makecode.microbit.org.

Coding the start line micro:bit using visual programming

Writing the code and loading it onto the start line micro:bit can be done one step at a time
but it is shown here all at once (Figure 13).

Load this code to the micro:bit first.

To understand this fully, compare it with the sequence of steps and pseudocode in Part A.
Make sure you load this code into the start line micro:bit, then connect the micro:bit as
shown previously.

Figure 13

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 7

Coding the finish line micro:bit using visual programming

The code for the finish line micro:bit is shown in Figure 14.

Again, you can compare the code in Figure 14 with the pseudocode algorithm in Part A.
Load the code onto the finish line micro:bit and power it up.

Aligning the lasers

Connect the programmed micro:bits and sensors and battery pack together as shown in
Figures 5, 6, 7, 8, 11 and 12 and then align each laser transmitter and receiver sensor as
shown in Figures 3 and 4. (It can be tricky so be patient.)

Press button A to get the analog sensor reading. If the analog value is above 30 with the
laser on and pointing directly at the sensor, then that will be enough to detect a signal is
being received from the transmitter. A higher value such as 200 shows a stronger signal is
being received. Note: If the table is bumped, the laser beam can move fractionally. This will
upset the readings and mean the lasers will need to be realigned, so be careful.

When readings are above the threshold (30) and students are ready to go, let them test their
cars and see how fast they travel. You could get them to do all the mathematics to work out
the speed each time. Certainly, just looking at the time will tell the fastest cars. You could
also program the micro:bit to work out the speed for you. The code shown in Figure 15 will
work out the average speed in kilometres/hour.

Figure 14

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 8

The on button A+B pressed code gives us
the kilometres/hour data. Students could try
applying the end velocity algorithm to work
out the final speed as an extension. This code
is added to the finish line micro:bit.

Your algorithm will vary compared with the
example shown as you will probably be
measuring over a greater distance than one
metre. Check the coder comments in Figure
15. The video at https://youtu.be/jl4JmfPRsK4
(Figure 16) explains the whole process.

Coding using general-purpose programming language (Python/MicroPython)
The wiring and set-up for the Python/MicroPython version is exactly the same as the block
code version. The computational thinking and algorithms are also the same. There would be
many solutions to this timing problem. Just one is presented here, which is quite similar to the
block code. The code for the Python/MicroPython version is shown at Figures 17 and 18
(start and finish, respectively). Students can code in Python inside the MakeCode website or
in MicroPython using an offline editor called Mu. The following code was created in
MicroPython.

Note: There are an unusually large number of coder comments in this code. This is to help
students understand what is going on. Students don’t need to write all the comments in – as
proficiency increases, the coder comments can be reduced. Comments always start with a
hashtag (#).

Figure 15

Figure 16: Screen shot from ACARA’s video: Digital
start finish line tutorial

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 9

Coding the start line micro:bit using Python/MicroPython
from microbit import * # get the necessary libraries
import radio

radio.on() # set up the communication stuff
radio.config(channel=10)
radio.config(power=7)
display.show(Image.YES) # alert user program is running

while True: # loop forever
 lightVal = pin0.read_analog() # get the pin0 value
 if button_a.was_pressed(): # used to align the laser and receiver
 display.scroll(lightVal)
 if lightVal < 30: # if beam is broken
 radio.send(str(lightVal)) # send message out
 display.show(Image.CONFUSED) # alert user beam has been cut
 sleep(100)

Coding the finish line micro:bit using Python/MicroPython
from microbit import * # get the necessary libraries
import radio

radio.on() # set up the communication
radio.config(channel=10)
radio.config(power=7)

CountingTime = 0 # counts in increments of hundredths of seconds
FinalTime = 0 # used to store the time taken between gates
display.show(Image.YES) # just lets the user know program is running

while True: # do this forever
 lightVal = pin0.read_analog() # get the pin0 value
 if button_a.was_pressed(): # if button a was pressed
 display.scroll(lightVal) # this must come first
 incoming = radio.receive() # check if an incoming message has arrived
 if incoming is not None: # if it has
 display.show(Image.HAPPY) # alert user timer has started
 finished = False
 while finished is False: # loop continues until beam broken
 sleep(10) # every 100th second
 CountingTime = CountingTime + 0.01 # increment by .01
 lightVal = pin0.read_analog() # get the pin0 value
 if lightVal < 40: # indicates beam has been broken
 FinalTime = CountingTime # store the current CountingTime
 finished = True # sets up the loop break
 display.clear() # hide the smiley face
 display.show(Image.CHESSBOARD) # alerts FinalTime has been stored
 if button_b.was_pressed(): # show the time taken
 display.scroll(FinalTime)
 if accelerometer.was_gesture(‘shake’): # works out km/h
 mps = 1.35/FinalTime # get metres per second first
 kmh = mps * 3.6
 display.scroll(kmh)

Figure 17

Figure 18

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 10

Appendix A: An alternative emitter/receiver sensor method: infrared

Using lasers may be of concern in some classroom
situations. An alternative approach is to use a
different type of sensor. Infrared (IR) sensors, like
the one shown in Figure 19, work just as well. There
are 5 mm and 3 mm versions available. The 5 mm
will have a slightly longer range; however, if you are
placing the emitter (transmitter) and receiver close
together, the 3 mm version will work just as well. A
set of the 3 mm version should be easy to find for
under $5.00.

Wiring the IR emitter
The wiring up for this alternative sensor is very similar to the laser wiring. Connect the negative
lead from a 3 V or 5 V battery pack to the negative (black) lead of the emitter. Connect the
positive lead from the battery pack to the positive (red) lead of the emitter. The IR emitter is the
one with only two leads. It also has a clear glass bulb to emit the infrared light.

Is it working?

While humans cannot easily see
infrared, most mobile phone cameras do
detect infrared and can display it.
Figures 20 and 21 depict images taken
with a mobile phone with the emitter
circuit broken and then complete. Figure
21 shows a red glow. This is the light
being emitted. Looking directly into the
top of the clear bulb, you should see a
slight reddish glow when the circuit is
completed. This is not harmful to your
eyes, unlike looking directly into a laser.

Wiring up the receiver sensor

The receiver (Figure 22) has three leads running from it:
red, black and white.

1. Connect the black wire to the GND of a micro:bit
microcontroller.

2. Connect the red wire to the 3V pin of the micro:bit.

3. Connect the white lead to the pin you want the input to
communicate with (pin 0 is used in Figure 22).

Make sure that the micro:bit has a power supply and the
correct software downloaded to it (whether it is the start
gate or the finish gate). Now you just need to align the
sensor and emitter and you have a start or finish gate.

The coding is the same as the laser example discussed earlier. Both the block code and
MicroPython versions of the code will work just as effectively for the IR start/finish lines as
they do for the laser start/finish lines.

Figure 22

Figure 19

Figure 20 Figure 21

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 11

Links to the Australian Curriculum
Table 1: Aspects of the Australian Curriculum: Digital Technologies (V9) Years 7–8 which may be
addressed depending on the task.

Digital
Technologies
Achievement
standard

By the end of Year 8 students develop and modify creative digital solutions,
decompose real-world problems, and evaluate alternative solutions against user
stories and design criteria. Students acquire, interpret and model data with
spreadsheets and represent data with integers and binary. They design and trace
algorithms and implement them in a general-purpose programming language.
Students select appropriate hardware for particular tasks, explain how data is
transmitted and secured in networks, and identify cyber security threats. They
select and use a range of digital tools efficiently and responsibly to create, locate
and share content; and to plan, collaborate on and manage projects. Students
manage their digital footprint.

Strand
Sub-strand

Digital Technologies knowledge and understanding
• Digital systems
• Data representation
Digital Technologies processes and production skills
• Investigating and defining
• Generating and designing
• Producing and implementing
• Evaluating

Content
descriptions

• explain how hardware specifications affect performance and select appropriate
hardware for particular tasks and workloads AC9TDI8K01

• investigate how data is transmitted and secured in wired and wireless
networks including the internet AC9TDI8K02

• define and decompose real-world problems with design criteria and by creating
user stories AC9TDI8P04

• design algorithms involving nested control structures and represent them using
flowcharts and pseudocode AC9TDI8P05

• trace algorithms to predict output for a given input and to identify errors
AC9TDI8P06

• implement, modify and debug programs involving control structures and
functions in a general-purpose programming language AC9TDI8P09

• evaluate existing and student solutions against the design criteria, user stories
and possible future impact AC9TDI8P10

Technologies
Core
concepts

• Systems
• Systems thinking
• Computational

thinking
• Data
• Technologies

processes and
production skills

• Interactions and
impact

Digital
Technologies
Core concepts

• Digital systems
• Data representation
• Data acquisition†
• Data interpretation†
• Abstraction
• Specification
• Algorithms
• Implementation

General
capabilities

• Digital Literacy
• Literacy
• Numeracy

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 12

Cross-
curriculum
priorities

• Sustainability Learning area or
subject
connections

• Science
• Health and Physical Education

† When data is a focus of the activity these additional content description(s) including Mathematics and core
concepts may apply.

Table 2: Aspects of the Australian Curriculum: Digital Technologies (V8.4) Years 7–8 which may be
addressed depending on the task.

Digital
Technologies
Achievement
standard

By the end of Year 8, students distinguish between different types of networks
and defined purposes. They explain how text, image and audio data can be
represented, secured and presented in digital systems.

Students plan and manage digital projects to create interactive information. They
define and decompose problems in terms of functional requirements and
constraints. Students design user experiences and algorithms incorporating
branching and iterations, and test, modify and implement digital solutions. They
evaluate information systems and their solutions in terms of meeting needs,
innovation and sustainability. They analyse and evaluate data from a range of
sources to model and create solutions. They use appropriate protocols when
communicating and collaborating online.

Strands Digital Technologies knowledge and understanding
• Digital systems
Digital Technologies processes and production skills
• Creating digital solutions by:

– Investigating and defining
– Producing and implementing
– Evaluating

Content
descriptions

• Investigate how data is transmitted and secured in wired, wireless and mobile
networks, and how the specifications affect performance (ACTDIK023)

• Define and decompose real-world problems taking into account functional
requirements and economic, environmental, social, technical and usability
constraints (ACTDIP027)

• Implement and modify programs with user interfaces involving branching,
iteration and functions in a general-purpose programming language
(ACTDIP030)

• Evaluate how student solutions and existing information systems meet needs,
are innovative, and take account of future risks and sustainability
(ACTDIP031)

Key concepts • abstraction
• data collection†
• data interpretation†
• specification
• implementation
• digital systems
• impact

Key ideas Thinking in Technologies
• computational thinking
• systems thinking

Cross-
curriculum
priorities

 General

capabilities
• Information and Communication

Technology (ICT) Capability
• Literacy

† When data is a focus of the activity these additional content description(s) and key concepts may apply.

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education, Skills and Employment CC BY 4.0 13

Useful links

Coding
• Find out more about the micro:bit www.microbit.org
• Code the micro:bit at www.makecode.org

– Code in Python inside MakeCode: https://python.microbit.org/v/1.1
– Blockcode within MakeCode: https://makecode.microbit.org/
– Python for beginners https://www.python.org/about/gettingstarted/

• Code in MicroPython with Mu editor. Download site: https://codewith.mu/en/download

Racing vehicles
• Sample work STEM Stage 4 – STEM Racers (NSW)

https://educationstandards.nsw.edu.au/wps/portal/nesa/resource-finder/sample-
work/stem/sample-work-stem-stage4-stem-racers

• STEM racer construction links (NSW) including student work samples
https://educationstandards.nsw.edu.au/wps/portal/nesa/resource-finder/sample-
work/stem

• Toys from trash – powered bottle car
http://www.arvindguptatoys.com/toys/Poweredbottlecar.html

Competitions and challenges
• NRMA Future of transport challenge http://nrmafuturetransport.com.au/about/

• The F1 in Schools STEM Challenge https://rea.org.au/f1-in-schools/

• Let’s Race (Queensland)
The activities in this module are designed to continue the development of students’
understandings of the basic principles of ‘working technologically’ within detailed design
specifications, as they design and develop a dragster to enter the Queensland CO2
Dragster Competition.
https://www.qcaa.qld.edu.au/downloads/p_10/kla_tech_sbm_502.pdf

• Model solar vehicle challenge (Victoria) https://sites.google.com/view/modelsolar/home

• Synergy Schools Solar Challenge (WA) https://www.solarchallenge.net.au/

Other resources
• STARportal is a collection of STEM activities and providers. Search the STARportal to

find local STEM education activities for your school. https://starportal.edu.au/

• The Girls in STEM (GiST) provides resources to inspire and inform girls, schools and
families in science, technology, engineering and mathematics (STEM). Explore activities,
resources, case studies, lessons, study pathways and careers.
https://www.thegist.edu.au

Disclaimer: ACARA does not endorse any product or make any representations as to the quality of such
products. This resource is indicative only. Any product that uses material published on the ACARA website
should not be taken to be affiliated with ACARA or have the sponsorship or approval of ACARA. It is up to each
person to make their own assessment of the product, taking into account matters including the degree to which
the materials align with the content descriptions and achievement standards of the Australian Curriculum. The
Creative Commons licence BY 4.0 does not apply to any trademark-protected material.

All images in this resource used with permission

