Structure of Essential Mathematics

Structure of Essential Mathematics

Essential Mathematics has four units each of which contains a number of topics. It is intended that the topics be taught in a context relevant to students’ needs and interests. In Essential Mathematics, students use their knowledge and skills to investigate realistic problems of interest which involve the application of mathematical relationships and concepts.

Unit 1 Unit 2 Unit 3 Unit 4
Calculations, percentages and rates
Measurement
Algebra
Graphs
Representing and comparing data
Percentages
Rates and ratios
Time and motion
Measurement
Scales, plans and models
Graphs
Data collection
Probability and relative frequencies
Earth geometry and time zones
Loans and compound interest

Units

Unit 1 provides students with the mathematical skills and understanding to solve problems relating to calculations, applications of measurement, the use of formulas to find an unknown quantity, and the interpretation of graphs. Teachers are encouraged to apply the content of all topics in contexts which are meaningful and of interest to their students. A variety of approaches could be used to achieve this. Two contexts which could be used in this unit are Mathematics and foods and Earning and managing money. However, these contexts may not be relevant for all students, and teachers are encouraged to find a suitable context that will make the mathematical topics of this unit relevant for their particular student cohort.

Unit 2 provides students with the mathematical skills and understanding to solve problems related to representing and comparing data, percentages, rates and ratios, and time and motion. Teachers are encouraged to apply the content of all topics in contexts which are meaningful and of interest to the students. A variety of approaches could be used to achieve this purpose. Two possible contexts which could be used in this unit to achieve this goal are Mathematics and cars and Mathematics and independent living. However these contexts may not be relevant for all students, and teachers are encouraged to find a suitable context that will make the mathematical topics of this unit relevant for their particular student cohort.

Unit 3 provides students with the mathematical skills and understanding to solve problems related to measurement, scales, plans and models, drawing and interpreting graphs, and data collection. Teachers are encouraged to apply the content of all topics in contexts which are meaningful and of interest to the students. A variety of approaches could be used to achieve this purpose. Two possible contexts which could be used in this unit to achieve this goal are Mathematics and design and Mathematics and medicine. However these contexts may not be relevant for all students and teachers are encouraged to find a suitable context that will make the mathematical topics of this unit relevant for their particular student cohort.

Unit 4 provides students with the mathematical skills and understanding to solve problems related to probability, earth geometry and time zones, and loans and compound interest. Teachers are encouraged to apply the content of all topics in contexts which are meaningful and of interest to the students. A variety of approaches could be used to achieve this purpose. Two possible contexts which could be used in this unit are Mathematics of Finance and Mathematics of travelling. However these contexts may not be relevant for all students and teachers are encouraged to find a suitable context that will make the mathematical topics of this unit relevant for their particular student cohort.

Organisation of achievement standards

The achievement standards in Mathematics have been organised into two dimensions: ‘Concepts and Techniques’ and ‘Reasoning and Communication’. These two dimensions reflect students’ understanding and skills in the study of mathematics.

Senior secondary achievement standards have been written for each Australian Curriculum senior secondary subject. The achievement standards provide an indication of typical performance at five different levels (corresponding to grades A to E) following the completion of study of senior secondary Australian Curriculum content for a pair of units. They are broad statements of understanding and skills that are best read and understood in conjunction with the relevant unit content. They are structured to reflect key dimensions of the content of the relevant learning area. They will be eventually accompanied by illustrative and annotated samples of student work/ performance/ responses.

The achievement standards will be refined empirically through an analysis of samples of student work and responses to assessment tasks: they cannot be maintained a priori without reference to actual student performance. Inferences can be drawn about the quality of student learning on the basis of observable differences in the extent, complexity, sophistication and generality of the understanding and skills typically demonstrated by students in response to well-designed assessment activities and tasks.

In the short term, achievement standards will inform assessment processes used by curriculum, assessment and certifying authorities for course offerings based on senior secondary Australian Curriculum content.

ACARA has made reference to a common syntax (as a guide, not a rule) in constructing the achievement standards across the learning areas. The common syntax that has guided development is as follows:

1. Given a specified context (as described in the curriculum content)
2. With a defined level of consistency/accuracy (the assumption that each level describes what the student does well, competently, independently, consistently)
3. Students perform a specified action (described through a verb)
4. In relation to what is valued in the curriculum (specified as the object or subject)
5. With a defined degree of sophistication, difficulty, complexity (described as an indication of quality)

Terms such as ‘analyse’ and ‘describe’ have been used to specify particular action but these can have everyday meanings that are quite general. ACARA has therefore associated these terms with specific meanings that are defined in the senior secondary achievement standards glossary and used precisely and consistently across subject areas.

Role of technology

It is assumed that students will be taught the Senior Secondary Australian Curriculum: Mathematics subjects with an extensive range of technological applications and techniques. If appropriately used, these have the potential to enhance the teaching and learning of mathematics. However, students also need to continue to develop skills that do not depend on technology. The ability to be able to choose when or when not to use some form of technology and to be able to work flexibly with technology are important skills in these subjects.