\(\mathrm E=\mathrm h\mathrm f\)
\(\mathrm E\;=\) energy of photon, \(\mathrm f\;=\) frequency, \(\mathrm h\;=\)
\(\left(6.626\;\times\;10^{-34}\;\mathrm J\;\mathrm s\right)\)
\({\mathrm\lambda}_{\mathrm m\mathrm a\mathrm x}\;=\frac{\mathrm b}{\mathrm T}\)
\({\mathrm\lambda}_{\mathrm m\mathrm a\mathrm x}=\;\) peak wavelength, \(\mathrm T\;=\;\) absolute temperature, \(\mathrm b\;=\) Wien’s displacement constant \(\text{(2.898 × }10^{-3}\;\text{m K)}\)
\({\mathrm E}_\mathrm k=\mathrm h\mathrm f-\;\mathrm W\)
\({\mathrm E}_\mathrm k=\;\) Ek= kinetic energy of photoelectron, \(\mathrm h\mathrm f\;=\) energy of incident photon, \(\;\mathrm W\;=\;\) work function of the material
\(\mathrm\lambda=\frac{\mathrm h}{\mathrm p}\)
\(\mathrm\lambda=\) wavelength associated with particle, \(\mathrm p\;=\) momentum of particle, \(\mathrm h\;=\) Planck’s constant \(\left(6.626\;\times\;10^{-34}\;\mathrm J\;\mathrm s\right)\)
\(\mathrm n\mathrm\lambda=2\mathrm\pi\mathrm r\)
\(\mathrm n\;=\) an integer 1, 2, 3, 4... , \(\mathrm\lambda=\)wavelength of electron, \(\mathrm r\;=\) orbital radius of electron
\(\mathrm m\mathrm v\mathrm r=\frac{\mathrm n\mathrm h}{2\mathrm\pi}\)
\(\mathrm m\;=\) mass of electron, \(\mathrm v\;=\) velocity of electron, \(\mathrm r\;=\) orbital radius of electron, \(\mathrm n\;=\) an integer 1, 2, 3, 4, etc., \(\mathrm h\;=\) Planck’s constant \(\left(6.626\;\times\;10^{-34}\;\mathrm J\;\mathrm s\right)\)
\(\frac1{\mathrm\lambda}=\mathrm R\left(\frac1{\mathrm n_\mathrm f^2}-\frac1{\mathrm n_\mathrm i^2}\right)\)
\(\mathrm\lambda=\) wavelength of spectral line, \({\mathrm n}_\mathrm i=\;\) principal quantum number of initial electron state, \(\;{\mathrm n}_\mathrm f=\;\) nf= principal quantum number of final electron state, \(\mathrm R\;=\) Rydberg’s constant \(\text{(1.097 × }10^7\;\text{m}^{-1}\text{)}\)