\mathrm F=\;\frac1{4\mathrm\pi{\mathrm\varepsilon}_0}\frac{\mathrm Q\mathrm q}{\mathrm r^2}
\mathrm F= force, \frac1{4\mathrm\pi{\mathrm\varepsilon}_\mathrm o}= Coulomb constant
\left(9\;\times\;10^9\;\mathrm N\;\mathrm m^2\;\mathrm C^{-2}\right), \mathrm q\;= charge on the first object, \mathrm Q\;= charge on the second object, \mathrm r\;= separation between the charges
\mathrm E=\frac{\mathrm F}{\mathrm q}=\frac1{4\mathrm\pi{\mathrm\varepsilon}_0}\frac{\mathrm q}{\mathrm r^2}
\mathrm E\;= electric field strength, \mathrm F\;=\; force, \mathrm q\;= charge, \mathrm r\;= distance from the charge, \;\frac1{4\mathrm\pi{\mathrm\varepsilon}_\mathrm o}= Coulomb constant
\left(9\;\times\;10^9\;\mathrm N\;\mathrm m^2\;\mathrm C^{-2}\right)
\mathrm V=\frac{\mathrm\Delta\mathrm U}{\mathrm q}
\mathrm V\;= electrical potential difference, \mathrm\Delta\mathrm U\;= change in potential energy, \mathrm q\;= charge
\mathrm B=\frac{µ_\mathrm o\mathrm I}{2\mathrm\pi\mathrm r}
\mathrm B\;= magnetic flux density, \mathrm I\;= current in wire, \mathrm r\;= distance from the centre of the wire, \;\frac{µ_\mathrm o}{2\mathrm\pi}= magnetic constant
\text{(2 × }10^{-7}\text{T }\text{A}^{-1}\text{m)}
For a straight, current carrying wire perpendicular to a magnetic field \mathrm F=\mathrm B\mathrm I\mathrm l
\mathrm B\;= magnetic flux density, \mathrm F= force on the wire, \mathrm l= l=length of wire in the magnetic field, \mathrm I = current in the wire
For a charge moving perpendicular to a magnetic field \mathrm F=\mathrm q\mathrm v\mathrm B
\mathrm F= force on a charge moving in an applied magnetic field, \mathrm q\;= charge, \mathrm v=\; velocity of the charge, \mathrm B\;= magnetic flux density
\mathrm\phi=\mathrm B{\mathrm A}_\perp
\mathrm\phi=\; magnetic flux, {\mathrm A}_\perp=\; area of current loop perpendicular to the applied magnetic field, \mathrm B\;= magnetic flux density
\mathrm e\mathrm m\mathrm f=-\;\frac{\mathrm n\bigtriangleup(\mathrm B{\mathrm A}_\perp)}{\operatorname\Delta\mathrm t}=-\;\mathrm n\frac{\operatorname\Delta\mathrm\phi}{\operatorname\Delta\mathrm t}
\mathrm e\mathrm m\mathrm f= induced potential difference, \triangle\mathrm\phi\;= change in magnetic flux, \mathrm n\;= number of windings in the loop, {\mathrm A}_\perp=\; area of current loop perpendicular to the applied magnetic field, \operatorname\Delta\mathrm t\;= time interval over which the magnetic flux change occurs, \mathrm B\;= magnetic flux density
\frac{{\mathrm V}_\mathrm p}{{\mathrm V}_\mathrm s}=\frac{{\mathrm n}_\mathrm p}{{\mathrm n}_\mathrm s}
{\mathrm V}_\mathrm p= potential difference across the primary coil, \;{\mathrm V}_\mathrm s=\; Vs= potential difference across the secondary coil, {\mathrm n}_\mathrm p\;= number of turns on primary coil, {\mathrm n}_\mathrm s= number of turns on secondary coil
{\mathrm I}_\mathrm p{\mathrm V}_\mathrm p={\mathrm I}_\mathrm s{\mathrm V}_\mathrm s\;
{\mathrm I}_\mathrm p= current in primary coil, {\mathrm V}_\mathrm p=\; Vp= potential difference across primary coil, {\mathrm I}_\mathrm s = current in secondary coil, \;{\mathrm V}_\mathrm s = potential difference across secondary coil